ZK-SCHNAPS:
ENFORCING ARBITRARY W
PASSWORD POLICIES IN A 2R e &
ZERO-KNOWLEDGE

PASSWORD PROTOCOL i
MATTHIJS ROELINK SUPERVISORS:

DR. M.H. EVERTS
31-10-2022 PROF.DR.IR. R.M. VAN RIJSWIJK-DEIJ

UNIVERSITY
OF TWENTE.

OVERVIEW

1. Introduction and problem statement

2. Building blocks

a. Homomorphic encryption
b. Zero-knowledge proofs
c. zk-SNARKs

d. SAVER

3. zk-SCHNAPS

Evaluation

Demo

Discussion and future work

Conclusion

Questions

UNIVERSITY
OF TWENTE.

INTRODUCTION AND
0t PROBLEM STATEMENT

UNIVERSITY
OF TWENTE.

INTRODUCTION

» Subject: password authentication

» Registration and login with a username and password

Inloggen

Bestaande klanten

4

? UNIVERSITY
Inloggen Wachtwoord vergeten? OF TWENTE.

Client

Choose valid username «
and password p such that
P(p) = Pi(p) N\ P(p)
A ... N P,(p) evaluates
to true, where P, is
a single password policy.

Server

Registration

CURRENT SITUATION

Login

Enter username v’ and

Send v and p

password p'.
Check that P(p)

evaluates to true.
Obtain h = H(p:s:t),
where H is a hash
function suitable for
password hashing, s is a
randomly generated n-
byte salt, ¢ is a constant
m-byte pepper and :
represents concatenation.

Store u, h and s.

{valid, invalid}

Send «’' and p’

Look up h and s
corresponding to u’.

(p:s:t)
and compare h and h'.

Compute b’ =

{valid, invalid}

UNIVERSITY
OF TWENTE.

PROBLEM

* The server needs to be trusted with:
 not misusing the password
 securely storing the password

* Solution: zero-knowledge password protocols

« New problem: server cannot enforce password policies

» Partial solution: Zero-Knowledge Password Policy Checks
 But only supports very limited password policies
 Leaks the password length

» We would like a scheme that

 does not reveal the password to a server
* Dbut allows enforcing arbitrary password policies

UNIVERSITY
OF TWENTE.

SOLUTION

o« zk-SCHNAPS:
Zero-
knowledge

Secure
Commitment-based
Homomorphic
Non-interactive
Authentication with
Passwords using
SNARKS

« Uses a zk-SNARK to prove compliance to the password policies

UNIVERSITY
OF TWENTE.

02 BUILDING BLOCKS

UNIVERSITY
OF TWENTE.

HOMOMORPHIC ENCRYPTION

A homomorphic encryption scheme is an encryption scheme with operations & and @ such that

E(m;) ® E(my) = E(my @ m;)
for all plaintexts m, and m,,.

Example - additive homomorphic encryption:
E(2)-E(5)=E2+5)=E(7)

UNIVERSITY
OF TWENTE.

ZERO-KNOWLEDGE PROOFS

* Proving knowledge of something without revealing it

 Typical use case: age verification

UNIVERSITY
OF TWENTE.

ZK-SNARKS (1)

 (lass of zero-knowledge proofs

 Acronym:
« zero-knowledge: no additional information can be learnt
 Succinct: small proof size and verification time
 Non-interactive: no interaction required between the prover and verifier
 Argument of Knowledge: the prover can convince the verifier without revealing the secret

» Basic idea: proof of a function F with (private) inputs x and output y = F(x).

UNIVERSITY
OF TWENTE.

ZK-SNARKS (2)

Create proof 7, of a
function F' with (secret)
inputs z and output

y = F(x).

Verifier

Send 7, and y

Verify y using .

UNIVERSITY
OF TWENTE.

SAVER

* Problem: encrypting values in a zk-SNARK
* Traditionally: perform encryption in circuit

« SAVER: SNARK-friendly, Additive-hnomomorphic and Verifiable Encryption and decryption with
Rerandomization

* Link encryption to zk-SNARK proof
o Additively homomorphic: E(m4) - E(m,) = E(m; + m,)

UNIVERSITY
OF TWENTE.

7
o
<<
=
T
O
L
s
N

UNIVERSITY
OF TWENTE.

MAIN IDEA

* Three phases:
» Registration
« Login
« Change password

« Use a zk-SNARK to prove compliance to the password policies
» Combine the zk-SNARK proof with SAVER to yield an encryption of the password hash

« Compare passwords by combing them using the homomorphic property of SAVER

UNIVERSITY
OF TWENTE.

ENCODING PASSWORDS AS INPUT OF A ZK-SNARK

* zk-SNARKS operate over a field IF,,, but a password is a variable-length string
* Apassword should thus be mapped to an element e € IF,,

» Two steps:
« Map each character c; of the password to an element e; € Z,, for a base b
* Aggregate each e; into a single element e € I,

k-1

€=28i°bi

1=0
UNIVERSITY
OF TWENTE.

ENCODING PASSWORD POLICIES IN A ZK-SNARK (1)

» Avalid proof can be created if and only if the password complies to the password policies

» Example policies:
e Minimum password length

* Minimum number of characters from a subset
» Password not in blocklist

 Substring of password not in blocklist

UNIVERSITY
OF TWENTE.

ENCODING PASSWORD POLICIES IN A ZK-SNARK (2) -
PASSWORD NOT IN BLOCKLIST

* Naive solution: embed blocklist in zk-SNARK and iterate through it
 Problem: large password blocklist results in a large circuit size
* Solution: store passwords in an AMQ-Filter (xor filter)

* Filter is encoded for space-efficiency

UNIVERSITY
OF TWENTE.

PROTOCOL - SETUP

 Performed by server

» Two setups:
« SAVER setup
« SAVER key generation

UNIVERSITY
OF TWENTE.

PROTOCOL - REGISTRATION (1)

Client

Choose valid username 4
and password p.

A$
S(—Zp

(m,CT) +
EnCregistration(CRSa p\a té\)

Send 4, n,CT, s

VerifY—EnCregistration<

CRS, PK,T,CT, 3)

Store 4, s and CT.

{valid, invalid} gy%l\illéﬁllTTg

PROTOCOL - REGISTRATION (2)

zk-SNARK:

—
—

-~

o

zk-SNARK
~
 Check that the password
complies to the password
policies
« Compute the password hash y

Password policies
defined during setup

UNIVERSITY
OF TWENTE.

Client

Enter username 4

PROTOCOL - LOGIN (1) and password p.

Request salt belonging
tou

 Password hash is locally § + DB.FindSalt(d)
computed

CT «
Enclogin(CRS, PK,ﬁ, .§)

Send 4 and CT

Verify Enciogin(
CRS, PK,CT)

CT < DB.FindCT(4)

Compare Enc(

CRS,SK, VK ,CT,CT)

{valid, invalid}

PROTOCOL - LOGIN (2)

 Password comparison can be achieved using the homomorphic property of SAVER
» Two ciphertexts CT = Enc(h) and CT' = Enc(h')

. o7 o— ST _ Enc(h)
LI = ct’ Enc(h')

= Enc(fz — ﬁ’)

« SAVER's decryption yields g* for an encryption Enc(x) and some base g

o Ifh = h', then h — h’ = 0 and decryption will resultin g° = 1

UNIVERSITY
OF TWENTE.

PROTOCOL - LOGIN (3)

* Problem: adversary can use the stored password hash encryption to log in

+ Solution: add a zero-knowledge proof ¢ proving knowledge of r and h in X’{G?

» Sigma protocol made non-interactive using the Fiat-Shamir heuristic:

® = (Pco» Pch» Pre)

UNIVERSITY
OF TWENTE.

PROTOCOL - CHANGE PASSWORD

 Combination of registration and login phase

UNIVERSITY
OF TWENTE.

PROTECTING AGAINST REPLAY-ATTACKS

 Problem: if an adversary gets hold of a login encryption, it can reuse it

* Solution: store commitment of ¢

UNIVERSITY
OF TWENTE.

=
O
—
<T
)
N_
=
T

UNIVERSITY
OF TWENTE.

IMPLEMENTATION

Extended snarkjs library to support subset of SAVER’s functions

Created schnapsjs, which implements the zk-SCHAPS protocol functions

Created Rust program to create and encode password blocklists

Created demo application, showcasing real-world use of schnapsjs

UNIVERSITY
OF TWENTE.

PERFORMANCE

Most zk-SCHNAPS functions under 1 second

Creating the registration proof is practical, but time depends on the implemented password

policies

Creating and using large
password blocklists is
practical as well

Funcon |Soonao | Twe)
DR

REGISTER.CREATEPROOF

UNIVERSITY
OF TWENTE.

os DEMO

UNIVERSITY
OF TWENTE.

DISCUSSION AND FUTURE
o6 WORK

UNIVERSITY
OF TWENTE.

DISCUSSION AND FUTURE WORK

» Password hash function
* |deally: slow and memory-hard
 Not possible yet in a zk-SNARK
 Future work:
« SNARK-friendly hash function suitable for passwords
 Modifying SAVER to prevent decryption

* Proving speed

* Fetching salts
« Exposes which usernames are taken

* Solution: return HMAC of the username if the username is unknown

UNIVERSITY
OF TWENTE.

=
O
n
—
—
O
=
®
O

UNIVERSITY
OF TWENTE.

CONCLUSION

» zk-SCHNAPS: zero-knowledge Secure Commitment-based Homomorphic Non-interactive
Authentication with Passwords using SNARKSs

 Supports arbitrary password policies
» Uses a zk-SNARK to enforce password policies, combined with SAVER

» Practical performance

UNIVERSITY
OF TWENTE.

s QUESTIONS

UNIVERSITY
OF TWENTE.

