
ZK-SCHNAPS:
ENFORCING ARBITRARY
PASSWORD POLICIES IN A
ZERO-KNOWLEDGE
PASSWORD PROTOCOL

MATTHIJS ROELINK

31-10-2022

SUPERVISORS:

DR. M.H. EVERTS
PROF.DR.IR. R.M. VAN RIJSWIJK-DEIJ

1. Introduction and problem statement

2. Building blocks
a. Homomorphic encryption
b. Zero-knowledge proofs
c. zk-SNARKs
d. SAVER

3. zk-SCHNAPS

4. Evaluation

5. Demo

6. Discussion and future work

7. Conclusion

8. Questions

OVERVIEW

INTRODUCTION AND
PROBLEM STATEMENT01

INTRODUCTION

• Subject: password authentication

• Registration and login with a username and password

CURRENT SITUATION

PROBLEM

• The server needs to be trusted with:
• not misusing the password
• securely storing the password

• Solution: zero-knowledge password protocols

• New problem: server cannot enforce password policies

• Partial solution: Zero-Knowledge Password Policy Checks
• But only supports very limited password policies
• Leaks the password length

• We would like a scheme that
• does not reveal the password to a server
• but allows enforcing arbitrary password policies

SOLUTION

• zk-SCHNAPS:
• zero-
• knowledge
• -
• Secure
• Commitment-based
• Homomorphic
• Non-interactive
• Authentication with
• Passwords using
• SNARKS

• Uses a zk-SNARK to prove compliance to the password policies

BUILDING BLOCKS02

HOMOMORPHIC ENCRYPTION

A homomorphic encryption scheme is an encryption scheme with operations ⊗ and ⊕ such that

$! ⊗# $" = #($!⊕$")
for all plaintexts $! and $".

Example - additive homomorphic encryption:
2 ⋅ # 5 = # 2 + 5 = #(7)

ZERO-KNOWLEDGE PROOFS

• Proving knowledge of something without revealing it

• Typical use case: age verification

ZK-SNARKS (1)

• Class of zero-knowledge proofs

• Acronym:
• zero-knowledge: no additional information can be learnt
• Succinct: small proof size and verification time
• Non-interactive: no interaction required between the prover and verifier
• Argument of Knowledge: the prover can convince the verifier without revealing the secret

• Basic idea: proof of a function - with (private) inputs . and output / = -(.).

ZK-SNARKS (2)

SAVER

• Problem: encrypting values in a zk-SNARK

• Traditionally: perform encryption in circuit

• SAVER: SNARK-friendly, Additive-homomorphic and Verifiable Encryption and decryption with
Rerandomization

• Link encryption to zk-SNARK proof

• Additively homomorphic: # $! ⋅ # $" = #($! +$")

ZK-SCHNAPS03

MAIN IDEA

• Three phases:
• Registration
• Login
• Change password

• Use a zk-SNARK to prove compliance to the password policies

• Combine the zk-SNARK proof with SAVER to yield an encryption of the password hash

• Compare passwords by combing them using the homomorphic property of SAVER

ENCODING PASSWORDS AS INPUT OF A ZK-SNARK

• zk-SNARKs operate over a field 0#, but a password is a variable-length string

• A password should thus be mapped to an element 1 ∈ 0#

• Two steps:
• Map each character 3$ of the password to an element 1$ ∈ ℤ% for a base 5
• Aggregate each 1$ into a single element 1 ∈ 0#:

1 = 6
$&'

()!
1$ ⋅ 5$

ENCODING PASSWORD POLICIES IN A ZK-SNARK (1)

• A valid proof can be created if and only if the password complies to the password policies

• Example policies:
• Minimum password length
• Minimum number of characters from a subset
• Password not in blocklist
• Substring of password not in blocklist

ENCODING PASSWORD POLICIES IN A ZK-SNARK (2) -
PASSWORD NOT IN BLOCKLIST
• Naive solution: embed blocklist in zk-SNARK and iterate through it

• Problem: large password blocklist results in a large circuit size

• Solution: store passwords in an AMQ-Filter (xor filter)

• Filter is encoded for space-efficiency

PROTOCOL - SETUP

• Performed by server

• Two setups:
• SAVER setup
• SAVER key generation

PROTOCOL - REGISTRATION (1)

PROTOCOL - REGISTRATION (2)

• zk-SNARK:
zk-SNARK

• Check that the password
complies to the password
policies

• Compute the password hash

Password

Salt

Password policies
defined during setup

Hash
!

PROTOCOL - LOGIN (1)

• Password hash is locally
computed

PROTOCOL - LOGIN (2)

• Password comparison can be achieved using the homomorphic property of SAVER

• Two ciphertexts 78 = #93 :ℎ and 78′ = #93 :ℎ*

• 78** = +,
+,! =

-./ 01
-./ 01! = #93 :ℎ − :ℎ*

• SAVER’s decryption yields >2 for an encryption #93(.) and some base >

• If :ℎ = :ℎ*, then :ℎ − :ℎ* = 0 and decryption will result in g' = 1

PROTOCOL - LOGIN (3)

• Problem: adversary can use the stored password hash encryption to log in

• Solution: add a zero-knowledge proof B proving knowledge of C and :ℎ in X!3G!01

• Sigma protocol made non-interactive using the Fiat-Shamir heuristic:

B = (B+4, B+1, B56)

PROTOCOL - CHANGE PASSWORD

• Combination of registration and login phase

PROTECTING AGAINST REPLAY-ATTACKS

• Problem: if an adversary gets hold of a login encryption, it can reuse it

• Solution: store commitment of B

EVALUATION04

IMPLEMENTATION

• Extended snarkjs library to support subset of SAVER’s functions

• Created schnapsjs, which implements the zk-SCHAPS protocol functions

• Created Rust program to create and encode password blocklists

• Created demo application, showcasing real-world use of schnapsjs

PERFORMANCE

• Most zk-SCHNAPS functions under 1 second

• Creating the registration proof is practical, but time depends on the implemented password
policies

• Creating and using large
password blocklists is
practical as well

DEMO05

DISCUSSION AND FUTURE
WORK06

DISCUSSION AND FUTURE WORK

• Password hash function
• Ideally: slow and memory-hard
• Not possible yet in a zk-SNARK
• Future work:
• SNARK-friendly hash function suitable for passwords
• Modifying SAVER to prevent decryption

• Proving speed

• Fetching salts
• Exposes which usernames are taken
• Solution: return HMAC of the username if the username is unknown

CONCLUSION07

CONCLUSION

• zk-SCHNAPS: zero-knowledge Secure Commitment-based Homomorphic Non-interactive
Authentication with Passwords using SNARKs

• Supports arbitrary password policies

• Uses a zk-SNARK to enforce password policies, combined with SAVER

• Practical performance

QUESTIONS08

