
Encoding Deadlock-Free Monitors in the
VerCors Verification Tool

Matthijs Roelink
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

m.j.roelink@student.utwente.nl

ABSTRACT
When developing a concurrent program, a deadlock is never
the intended result. However, avoiding them is often at-
tributed to the experience of the developer, as a compiler
is generally not able to detect them. Recently, a technique
has been proposed to verify deadlock-freeness of a program
with monitors. The aim of this research is to investigate
how this technique can be encoded in the VerCors veri-
fication tool to verify deadlock-freeness of Java-like pro-
grams. This paper specifies the required annotation syn-
tax and describes the implementation of the technique in
VerCors.

Keywords
Deadlock, Monitor, Verification, Concurrency, VerCors

1. INTRODUCTION
In concurrent programs, synchronization of threads is a
widely used construct. It allows controlled execution of
critical sections, often only accessible by one thread at a
time.

One such synchronization construct is a monitor. Moni-
tors enforce mutual exclusion, thus ensuring that only one
thread can execute the critical section protected by the
monitor. In general, a monitor consists of a resource and
a condition variable. Often, this resource is a lock. In
addition, a monitor has at least two operations: wait and
signal [15]. The former operation releases the resource
and waits until it is signaled, while the latter operation
signals a waiting thread. A thread can only call these
operations if it has acquired the resource.

One caveat of monitors is the risk of deadlocks. A dead-
lock occurs when two or more threads have a cyclic lock-
ing dependency, thus indefinitely waiting for each other
[12]. This may cause (parts of) the program to block.
Without any precautions, the only way to recover from
this situation is by restarting the program, which is of-
ten inconvenient. As threads in concurrent programs can
have many different interleavings, it might happen that
a deadlock occurs under very specific circumstances and
is not detected before going into production. Naturally,
deadlock-free assurance of a program is crucial.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
33rd Twente Student Conference on IT July 3rd, 2020, Enschede, The
Netherlands.
Copyright 2020, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

To enable the verification of concurrent programs, the Ver-
Cors verification tool was developed [6]. It is able to ver-
ify parallel and concurrent features of programs written
in Java, C, PVL [26], OpenCL and OpenMP [5]. Pro-
grammers can annotate their code, which is then used
by VerCors for verification. Although VerCors supports
a wide range of verification features, such as data-race
freedom and functional correctness of programs written
in the aforementioned languages, it does not yet support
verification of absence of deadlocks.

Examples of other verification tools are VeriFast [16] and
VCC [7]. VerCors distinguishes itself from these other
verification tools by first compiling the original program
to an intermediate program written in Silver [20] and then
verifying this intermediate program using the Viper frame-
work [20]. This allows verification of any program written
in a language that can be compiled to Silver [5].

Verification of deadlock-freeness of a program that uses
locks is already a solved problem [13, 17]. When using
locks, a deadlock occurs when there is not a strict lock-
ing order. To mitigate a deadlock in such a scenario, one
can impose a specific lock order. This ensures that the
locks are always acquired in the same order and will never
have a cyclic dependency. Verification of absence of dead-
locks then merely consists of verifying if this lock order is
enforced.

This approach does not work for programs that use mon-
itors, however, as threads can acquire and release locks
dynamically using the wait and signal operations. In
such programs, a deadlock occurs when a thread that is
waiting for a condition variable is never notified or, when
it is notified, is not able to acquire the associated lock.

There are several approaches to detect and avoid [1, 11,
25] or recover [2] from deadlocks during runtime, but these
do not verify that a program is indeed deadlock-free be-
forehand. Other approaches present methods to verify the
absence of deadlocks of programs that use channels [19]
and locks [13, 17]. These approaches cannot be applied
to monitors, however, since monitors have the property
that signals can be missed if no thread is waiting for the
condition variable [14]. Gomes et al. [8] describe the ver-
ification of synchronization with condition variables, but
put restrictions on the programs that can be verified.

A more promising technique to verify the absence of dead-
locks in programs that use monitors is described in [14].
The proposed approach is modular and is generalized for
all monitor applications. In addition, the authors managed
to implement this technique in the VeriFast program veri-
fier [16]. The technique uses separation logic [21] to verify
the absence of deadlocks, which is supported by VerCors
in an extended form [3, 4].

1

The aim of this research is to investigate how the tech-
nique described in [14] can be encoded in VerCors to verify
deadlock-freeness of Java-like programs that use monitors.

This paper is structured as follows. Section 2 gives back-
ground information on the approach presented in [14] and
on the VerCors verification tool. Section 3 defines the an-
notation syntax necessary for the verification. Section 4
explains the implementation in VerCors. The validation
of the implementation is discussed in Section 5. Section
6 shows an example of an annotated Java program that
uses the annotations defined in section 3. Finally, Section
7 concludes the paper and Section 8 proposes future work.

2. BACKGROUND
2.1 Deadlock-Free Monitors
Hamin et al. [14] describe a technique to verify deadlock-
freeness, which uses separation logic [21] to reason about
deadlock-freeness of a program. Their approach is mod-
ular, meaning that separate parts of the program can be
verified independently of each other. In addition, the ap-
proach does not suffer from long verification time when
the state space size increases. Although the authors gen-
eralize their technique for other applications of condition
variables as well, this research only focuses on the verifi-
cation of monitors.

The central idea of the technique is the notion of obli-
gations, introduced in [19]. There can be obligations for
both locks and condition variables. A thread is assigned
an obligation for a lock if it acquires that lock. The thread
can discharge this obligation by releasing the lock.

An obligation for a condition variable can be arbitrar-
ily assigned to a thread. Discharging an obligation for
a condition variable v, however, is only allowed if either
no threads are waiting for v or there is a thread that has
an obligation for v. There is not a fixed moment when
an obligation is assigned and discharged for a condition
variable. It depends on the context of the program and is
the programmer’s responsibility.

Formally, Wt is defined as the bag of threads that are
waiting for a condition variable. This bag is a mapping
from a condition variable v to the number of threads that
are waiting for v and is stored per monitor. The number
of threads waiting for v can be queried with Wt(v).

To keep track of the obligations of all threads, the bag
Ot is defined. Ot is a mapping from a condition variable
v to the number of threads that have an obligation for
v. Similar to Wt, the bag is stored per monitor and the
number of threads that have an obligation for v can be
queried with Ot(v).

Each lock associated with a condition variable v should
have an invariant that implies the invariant enoughObs(v,
Wt, Ot) defined as

enoughObs(v,Wt,Ot) = (Wt(v) > 0 =⇒ Ot(v) > 0)

meaning that either no threads should be waiting for v or
there should exist a thread that has an obligation for v.

Next to the bags Wt and Ot, each thread keeps track of its
own obligations using a local bag obs(O). When an obli-
gation for a lock or condition variable is loaded into Ot,
it should also be loaded into obs(O) of the thread. Sim-
ilarly, when an obligation for a lock or condition variable
is discharged from Ot, it should also be discharged from
obs(O) of the thread.

In addition, each lock and condition variable is assigned

a wait level. A thread is only allowed to acquire a lock
or wait for a condition variable if the wait level of that
lock/condition variable is the lowest of all wait levels of the
obligations of that thread. This is denoted by o ≺ obs(O),
where o is the lock or condition variable. The wait levels
ensure that there are no cyclic dependencies.

Now that the necessary utilities are defined, we can reason
about the absence of deadlocks in a program by following
certain rules. The rules are systematically shown in Ta-
ble 1 and ensure that:

1. When a thread executes wait() on a condition vari-
able v, there should exist a thread that has an obli-
gation for v.

2. A thread only discharges an obligation for a condi-
tion variable v if either no threads are waiting for v
or there exists a thread that has an obligation for v.

3. A thread only executes wait() on a condition vari-
able v if the wait level of v is lower than the wait
levels of all obligations of that thread.

A program begins with an empty bag and should also end
with an empty bag. If in the end the bag is not empty,
i.e., there is still a thread that has an obligation (and thus
a thread that is still waiting), then the program is not
deadlock-free.

When a thread t wants to acquire a lock l, l must have
the lowest wait level of all obligations of t : l ≺ obs(O).
Note that this relation may be relaxed to l � obs(O) if t
already acquired l, since the intrinsic lock of a monitor is
reentrant. If t has successfully acquired l, l is added to the
obligations of t. The obligations of t are now obs(O]{l}).
A thread t can release a lock l without any preconditions,
providing that t has acquired l. When t releases l, l is
removed from the obligations of t (i.e., obs(O − {l})).
A thread t can load n obligations for a condition variable v
arbitrarily. These obligations are then added to the local
bag of obligations (obs(O] {n ∗ v1})) and to the global
bag of obligations (Ot] {n ∗ v}).
A thread t can discharge n obligations for a condi-
tion variable v arbitrarily if after the discharge, the rule
enoughObs(v, Wt, Ot) holds. Therefore, before discharg-
ing the obligations, enoughObs(v, Wt, Ot−{n∗v}) should
hold, as n instances of v will be removed from Ot. The n
obligations for v are discharged from the local bag of obli-
gations of t (obs(O − {n ∗ v})) as well as from the global
bag of obligations (Ot− {n ∗ v}).
Before a thread t can wait for a condition variable v that is
protected by a lock l, t should have acquired l and l should
be present in the local bag of obligations of t (obs(O]{l})).
In addition, the wait levels of v and l should be lower
than the wait levels of all obligations of t (v ≺ O and
l ≺ O). l ≺ O is necessary because when t is notified, it
will try to reacquire l. Since l is going to be released by
calling v.wait, it is not necessary that the wait level of v
is lower than the wait level of l. Finally, as the number
of threads waiting for v will be incremented, the invariant
enoughObs(v, Wt] {v}, Ot) should hold. After calling
v.wait() and before suspension, one instance of v is added
to Wt.

When a thread executes notify() on a condition variable
v, an arbitrary thread that is waiting for v (if there is one)

1In this context, n ∗ v means n instances of v.

2

Table 1. Rules for deadlock-free monitors

Action Preconditions Postconditions

When a thread t acquires a lock l • l ≺ obs(O) • obs(O] {l})

When a thread t releases a lock l • obs(O − {l})

When a thread t loads n obligations for
a condition variable v

• obs(O] {n ∗ v})
• Ot] {n ∗ v}

When a thread t discharges n obliga-
tions for a condition variable v

• enoughObs(v, Wt, Ot− {n ∗ v}) • obs(O − {n ∗ v})
• Ot− {n ∗ v}

When a thread t waits for a condition
variable v that is protected by a lock l

• obs(O] {l})
• v ≺ O

• l ≺ O

• enoughObs(v, Wt] {v}, Ot)

• obs(O] {l})

When a thread t notifies a thread wait-
ing for a condition variable v

• Wt− {v}

When a thread t notifies all threads
waiting for a condition variable v

• Wt(v) = 0

is woken up and one instance of v is removed from Wt.
Executing v.notifyAll() results in waking up all threads
that are waiting for v (if any) and removing all instances
of v from Wt.

An example program that can be successfully verified with
this technique is shown in Listings 1-3. This program is
developed by the author of this paper. For more examples,
see [14].

The example program is a concurrent unbounded buffer
with two producers and one consumer. The producers run
in separate threads and each adds five items to the buffer.
The main thread acts as the consumer and tries to read
ten items from the buffer.

After creating a buffer in line 6 of Listing 3, a wait level is
assigned to the lock and the condition variable. buffer.l

references the intrinsic lock of the buffer, while buffer.v

references its condition variable. R is a function that maps
a lock/condition variable to its wait level.

After creating the two producers, ten obligations for
buffer.v are loaded into the bag of obligations of the main
thread (line 13), since it will try to read ten values from
the buffer later in the program. As both p1 and p2 will
write five values to the buffer, the obligations are divided
over the two producers, each getting five obligations (lines
15-17). This leaves the main thread with an empty bag of
obligations again (line 18).

After the producers have been instantiated, the main
thread will continue by reading values from the buffer
(lines 20-22). As the main thread has no obligations, the
preconditions of read() are satisfied (see Listing 1). If the
buffer is empty, enoughObs(buffer.v, Wt] {buffer.v}, Ot)
holds, since the producer threads have loaded the obliga-
tions for buffer.v. Otherwise, the first value from the
buffer is returned (lines 12-18).

When a producer executes buffer.write(i), i is added
to the buffer (line 15 of Listing 2). After signalling a
waiting thread (if one), the producer can discharge an
obligation for buffer.v (lines 28-29 of Listing 1), since
either no threads are waiting for buffer.v or one of
the producers has an obligation for buffer.v, satisfying
enoughObs(buffer.v, Wt, Ot)). After a producer has writ-

ten to the buffer five times, the thread has an empty bag
of obligations (line 18 of Listing 2).

As can be seen in Listing 3, the program starts with an
empty bag of obligations and also ends with an empty bag,
proving the absence of deadlocks in this program. If the
program would try to read eleven values instead of ten
or if the notify() call was forgotten in write(T item),
the verification would fail and the program would not be
deadlock-free.

1 import java . u t i l . L inkedList ;
2
3 public c lass UnboundedBuffer<T> {
4
5 private f ina l LinkedList<T> bu f f e r = new

LinkedList <>() ;
6
7 // req : obs (O) ∧ t h i s . l ≺ O ∧ t h i s . v ≺ O
8 // ens : obs (O)
9 public T read () {

10 synchronized (this) {
11 // obs (O] { t h i s . l })
12 while (bu f f e r . s i z e () == 0) {
13 // enoughObs (t h i s . v , Wt] { t h i s . v} , Ot)

∗ t h i s . l ≺ O ∧ t h i s . v ≺ O
14 try { wait () ; }
15 catch (Inter ruptedExcept ion e) { }
16 // enoughObs (t h i s . v , Wt, Ot)
17 }
18 return bu f f e r . pop () ;
19 }
20 // obs (O)
21 }
22
23 // req : obs (O] { t h i s . v}) ∧ t h i s . l ≺ O] { t h i s

. v}
24 // ens : obs (O)
25 public void wr i t e (T item) {
26 synchronized (this) {
27 // obs (O] { t h i s . v , t h i s . l }) ∗ Ot] { t h i s .

v}
28 bu f f e r . add (item) ;
29 no t i f y () ;
30 // d i s charge (t h i s . v)
31 // obs (O] { t h i s . l }) ∗ Ot
32 }
33 // obs (O)
34 }
35 }

Listing 1. UnboundedBuffer.java

3

1 public c lass Producer extends Thread {
2
3 private f ina l UnboundedBuffer<Integer> bu f f e r ;
4
5 public Producer (UnboundedBuffer<Integer>

bu f f e r) {
6 this . b u f f e r = bu f f e r ;
7 }
8
9 // req : obs (O] {5∗ bu f f e r . v})

10 // ens : obs (O)
11 @Override
12 public void run () {
13 for (int i = 0 ; i < 5 ; i++) {
14 // obs (O] {(5− i)∗ bu f f e r . v}
15 this . b u f f e r . wr i t e (i) ;
16 // obs (O] {5− i −1)∗ bu f f e r . v}
17 }
18 // obs (O)
19 }
20 }

Listing 2. Producer.java

1 public c lass Main {
2
3 // req : obs ({})
4 // ens : obs ({})
5 public stat ic void main (St r ing [] args) {
6 UnboundedBuffer<Integer> bu f f e r = new

UnboundedBuffer<>() ;
7 // R(bu f f e r . l) = 0 ∧ R(bu f f e r . v) = 1
8
9 Producer p1 = new Producer (bu f f e r) ;

10 Producer p2 = new Producer (bu f f e r) ;
11
12 // obs ({})
13 // charge (bu f f e r . v , 10)
14 // obs ({10 ∗ bu f f e r . v})
15 p1 . s t a r t () ;
16 // obs ({5 ∗ bu f f e r . v})
17 p2 . s t a r t () ;
18 // obs ({})
19
20 for (int i = 0 ; i < 10 ; i++) {
21 bu f f e r . read () ;
22 }
23 }
24 }

Listing 3. Main.java

2.2 VerCors
VerCors is a verification tool developed by the Univer-
sity of Twente to verify parallel and concurrent programs
[10]. Next to reasoning about race freedom and memory
safety, it is also able to verify functional correctness of a
program [5]. Verification of a program in VerCors is mod-
ular, meaning that each function in a program is verified
both separately (i.e., independent of other functions) and
together with other functions.

A wide range of frontend languages are supported, consist-
ing of subsets of Java, C, PVL [26], OpenCL and OpenMP
[5]. A program written in any of those languages can thus
be verified by VerCors.

Programs can be verified by VerCors with the help of anno-
tations. These annotations are combined with permission-
based separation logic [3, 4]. Programmers can annotate
their code using predefined keywords. In Java, those anno-
tations should be written as comments and the comment
should start with ’@’.

The functionality provided by these annotations includes,
but is not limited to, specifying invariants, pre- and post-
conditions of a method and permissions of a heap location.
These assertions are then evaluated using symbolic execu-
tion.

An example of an annotated program is shown in List-
ing 4. The program is a simple counter. It features pre-
and postconditions (requires and ensures), heap loca-
tion permissions (Perm) and a loop invariant.

In the example program, the counter can be incremented
by one (increment) or by any nonnegative number n
(incrementByN). The precondition of the latter function
ensures that only nonnegative numbers can be passed as
arguments. If the method would be called with a negative
number, the verification would fail.

1 public c lass Counter {
2
3 public int number ;
4
5 /∗@
6 r e qu i r e s Perm(number , wr i t e) ;
7 ensures Perm(number , wr i t e) ∗∗ number == \

old (number) + 1 ;
8 ∗/
9 public void increment () {

10 number = number + 1 ;
11 }
12
13 /∗@
14 r e qu i r e s Perm(number , wr i t e) ∗∗ n >= 0 ;
15 ensures Perm(number , wr i t e) ∗∗ number == \

old (number) + n ;
16 ∗/
17 public void incrementByN (int n) {
18 int i = n ;
19 //@ l o op i nva r i an t Perm(number , wr i t e) ∗∗

number + i == \ old (number) + n ∗∗ i >= 0 ;
20 while (i > 0) {
21 number = number + 1 ;
22 i = i − 1 ;
23 }
24 }
25 }

Listing 4. Counter.java

The architecture, as described in [5], can be found in Fig-
ure 1. Before a program written in one of the supported
languages can be verified, a programmer has to annotate
its code in a JML-like [18] syntax. Together with the pro-
gram, these annotations are translated into a verification
problem in Silver [20]. The verification is then done on
this verification problem using the Viper framework [20],
which in turn uses an SMT solver Z3 [9].

VerCors is primarily responsible for parsing the input pro-
grams and transforming those into a verification problem
that Viper can reason about. Verification of the resulting
Viper program is done using external libraries and is thus
not part of the development of VerCors.

The first step in the verification process is parsing the
source program in one of the supported languages. Both
the language-specific statements and annotations are trans-
lated into the internal Abstract Syntax Tree (AST) named
COL (Common Object Language), after which the COL
is type checked.

The next step is applying several rewrites to the COL.
During the rewrite phase, the COL is rewritten such that
the resulting program has the same result as before the
rewrite, but features more verification constructs. In ad-
dition, some rewrites are necessary to translate concepts
that are not supported by Viper. Each rewrite is respon-
sible for a certain change in the AST. This can be a large
rewrite, such as rewriting classes to functions, or a smaller
one, such as providing the current thread identifier to all
functions.

Finally, the transformed COL is translated into a valid
Viper program. The Viper framework is one of the sup-

4

Figure 1. The architecture of VerCors [5]

ported backends and currently the main backend. The
Viper framework is responsible of verifying the resulting
Viper program. Based on this outcome, VerCors either
marks the program as a pass or a fail.

3. ANNOTATION SYNTAX
This section proposes the additional annotation syntax
that is required for the verification of absence of deadlocks
in programs that use monitors. The annotations provide
extra information to VerCors, such that VerCors can suc-
cessfully verify deadlock-freeness of a program. These an-
notations are systematically shown in Table 2.

The annotations defined in this paper follow the guide-
lines of VerCors. This means that statement annotations
don’t use parentheses for separating the function name
with the parameters, while expression annotations do use
such parentheses. In addition, expressions start with a
backslash.

To charge obligations for a monitor, charge_obs can be
used. It requires two parameters, namely a monitor in-
stance m and the amount of obligations to be charged
n. Note that only the condition variable of a monitor is

charged via this function. In the case of n = 1, charge_ob
can be used instead, which takes only a single parameter,
namely a monitor instance.

Obligations can be discharged using discharge_obs. Just
like charge_obs, discharge_obs requires a monitor in-
stance and the amount of obligations to be charged. In
addition, only obligations for the condition variable of the
monitor are discharged. Similarly, discharge_ob can be
used if only one obligation for a monitor is to be dis-
charged.

Transferring obligations to another thread is done via
transfer_obs. Its parameters are a monitor instance
m, the amount of obligations to be transferred n and
the thread identifier t to which the obligations should be
transferred. Only obligations for condition variables can
be transferred between threads. Similar to the previous
two statements, the simplified form transfer_ob m, t is
available for n = 1.

To access Wt of a monitor m, \Wt(m) can be used. Sim-
ilarly, \Ot(m) is defined to access Ot of m. These anno-
tations are typically used in pre- and postconditions of a
method.

Table 2. Annotation syntax

Annotation Type Description Example

charge_obs m, n

if n = 1: charge_ob m

Statement Charge n obligations for the con-
dition variable of a monitor m.

Object o = new Object();

//@ charge obs o, 3;

discharge_obs m, n

if n = 1: discharge_ob m

Statement Discharge n obligations for the
condition variable of a monitor m.

Object o = new Object();

//@ discharge obs o, 3;

transfer_obs m, n, t

if n = 1: transfer_ob m, t

Statement Transfer n obligations for the
condition variable of a monitor m
to a thread with identifier t.

Object o = new Object();

//@ charge obs o, 5;

Thread th = new Thread();

//@ transfer obs o, 3, th.getId() ;

set_wait_level z, r Statement Set the wait level r of a lock /
condition variable z.

Object o = new Object();

//@ set wait level \lock(o), 0;

//@ set wait level \cond(o), 1;

\Wt(m) Expression Access Wt of a monitor m. \Wt(this)

\Ot(m) Expression Access Ot of a monitor m. \Ot(this)

\lock(m) Expression Access the lock of a monitor m. \lock(this)

\cond(m) Expression Access the condition variable of a
monitor m.

\cond(this)

\wait_level(z) Expression Access the wait level of a lock /
condition variable z.

\wait level (\cond(this))

\has_obs(z, n)

if n = 1: \has_ob(z)

Expression Check that the current thread has
at least n obligations for a lock /
condition variable z.

\has obs(\cond(this), 3)

\no_obs Expression Check that the current thread has
no obligations.

\no obs

5

Since a monitor in Java combines both a lock and a condi-
tion variable into a single object, annotations are needed
to differentiate between the two. To this end, \lock(m)
accesses the lock of a monitor m and \cond(m) gives ac-
cess to the associated condition variable.

To set the wait level of a lock or condition variable, the
set_wait_level annotation has been defined. It is a state-
ment that sets the wait level of a lock or condition variable
z to an integer r. The parameter z must either be a lock
(e.g. z == \lock(m)) or a condition variable (e.g. z ==
\cond(m)). Querying the wait level can be done using
\wait_level(z).

To check if the current thread has a certain number of
obligations for a lock or condition variable, \has_obs can
be used. The function has two parameters: a lock or con-
dition variable z and an amount n. The function returns
true if the current thread has at least n obligations for
z and false otherwise. If n = 1, an alternative function
\has_ob(z) is available, only requiring a lock/condition
variable z.

Finally, to indicate that the current thread has an empty
bag of obligations, \no_obs is defined. This annotation is
typically used as both precondition and postcondition of
the main method of a program, as a program should start
with an empty bag of obligations and also end with an
empty bag.

4. IMPLEMENTATION
This section describes how the verification of deadlock-
free monitors can be implemented in VerCors. Section
4.1 discusses the the general steps that are taken. Sec-
tion 4.2 focuses on the utilities that should be defined for
the rewrite phase. Finally, section 4.3 explains how each
annotation and monitor method is rewritten.

4.1 Overview
The general approach is to transform the input program
with the proposed annotations to expressions and state-
ments that are already supported in VerCors. Each class
of the input program is transformed into an extended class
with ghost fields and specifications over these fields.

The implementation consists mainly of three stages:

1. Parsing the new annotations

2. Type checking the annotations

3. Rewrite the annotations and other constructs to sup-
ported VerCors input

First, the new annotations can be parsed by adding them
to the specification parser. These should then be mapped
to appropriate keywords.

Second is the type checking phase. In this stage, the ar-
guments of the new annotations should be type checked.
This is necessary, since the parser may allow invalid types
to be passed as arguments to the annotations. The al-
lowed types can be derived from Section 3 and Table 2.
For example, an obligation can only be charged for a class
instance, not for an integer. Similarly, the argument of
wait_level expects either the lock or condition variable
of a monitor.

Finally, the last step consists of adding a new rewrite
pass, which walks through the Abstract Syntax Tree and
rewrites the annotations defined in Section 3 and the moni-
tor methods into expressions and statements supported by
VerCors. This rewrite pass is were the technique from [14]
is applied. A schematic overview of the required rewrites

can be found in Appendix A of the Online Appendix [24].
The remainder of this section discusses the implementa-
tion of the rewrite pass.

4.2 Preliminaries
4.2.1 Variables per monitor

Each class should be given four new ghost fields. These
are Wt, Ot, wait_level_lock and wait_level_cond, all of
type integer. The former two correspond to Wt(v) and
Ot(v) and should have 0 as initial value and should always
be nonnegative. The latter two fields are the wait levels of
respectively the intrinsic lock and the condition variable.
These need to be manually set by set_wait_level and
thus do not have an initial value.

4.2.2 Obligations per thread
Next to the variables per monitor, each thread should have
its own bag of obligations obs. To keep track of a thread’s
obligations, this bag is injected into every function and is
thus always available for a thread. This can be achieved
by adding the obligations argument to all methods and
method invocations.

4.3 Rewriting annotations and method calls
4.3.1 Expressions

Accessing Wt and Ot of a monitor m is done by using
the expressions \Wt(m) and \Ot(m) respectively. These
expressions should be translated into m.Wt and m.Ot.

The intrinsic lock and condition variable of a monitor m
can be accessed with \lock(m) and \cond(m). There are
two approaches that can be taken with these expressions.
The first approach is ignoring these expressions and use
them when rewriting the expression or statement in which
they occur. Alternatively, two fields lock and cond can
be added to each monitor. The expressions can then be
rewritten to m.lock and m.cond for a monitor m. This
paper uses the first approach.

The \wait_level annotation queries the wait level of a
lock or condition variable. Depending on whether the ar-
gument is a lock or condition variable, the annotation is
rewritten to m.wait_level_lock or m.wait_level_cond

for a monitor m.

To check whether the current thread has certain obliga-
tions, \has_ob or \has_obs is used. This expression should
be replaced by an expression that checks whether the obli-
gations are present in obs.

Finally, \no_obs can be rewritten to obs.length == 0.

4.3.2 Charging and discharging obligations
To charge one or more obligations for a lock or condi-
tion variable, a programmer has to use the charge_ob or
charge_obs annotation. Upon encountering one of these
annotations in the rewrite phase, the annotation statement
should be replaced by two ghost statements. In the first
statement, the obligations are added to obs. The second
statement adds the amount of obligations to the field Ot

of the monitor.

Discharging obligations (using discharge_ob or dis-

charge_obs) has a similar procedure as charging obliga-
tions, except that an assertion is needed to check the pre-
condition (see Table 1). The annotation should thus be
replaced by three statements. The first statement should
assert that the precondition enoughObs(v, Wt, Ot−{n∗v})
holds. Since each monitor has been given the fields Wt and
Ot, this is equal to asserting m.Wt == 0 || m.Ot - n > 0

for a monitor m and the amount of obligations n. The

6

next two statements remove the obligation(s) from obs

and subtract the amount of obligations from the Ot field
of the monitor.

4.3.3 Transferring obligations
As discussed in Section 3, obligations can be transferred
from one thread to another with transfer_ob or trans-

fer_obs. Replacing these annotations is done in three
parts.

First, an assert statement is necessary to assert that the
current thread has the obligations that should be trans-
ferred. This avoids negative obligations for the current
thread or that obligations are implicitly created.

Secondly, the obligations should be copied to the local
bag of obligations of the thread with the indicated thread
identifier.

Finally, the obligations should be removed from obs of the
current thread.

4.3.4 Setting the wait level
The wait level of a lock or condition variable can be set
with set_wait_level. This annotation can be rewrit-
ten to an assignment statement, either assigning the
wait level to m.wait_level_lock (in case of a lock)
or m.wait_level_cond (in case of a condition variable),
where m is a monitor.

4.3.5 Acquiring and releasing an intrinsic lock
When acquiring the intrinsic lock of a monitor (by us-
ing the synchronized keyword), there are three required
steps.

First, the precondition of acquiring a lock needs to be
checked. As shown in Table 1, the lock should have the
lowest wait level of the current thread’s obligations. This
can be checked by comparing each obligation’s wait level
in obs with the wait level of the lock. Note that it is
allowed to have multiple obligations for the same lock,
since intrinsic locks are reentrant. Therefore, this may
require an additional comparison.

Secondly, after the lock is acquired, the obligation for the
lock should be added to obs.

Finally, having acquired the lock means that the current
thread obtains full permissions to read from and write to
the fields Wt and Ot of the monitor. These permissions
should be given to the current thread.

When releasing the intrinsic lock of a monitor, one obliga-
tion for that lock should be removed from obs. In addition,
the permissions for Wt and Ot should be revoked.

4.3.6 Waiting for a monitor
Upon encountering a wait() statement, there are five ac-
tions that should be taken.

First, a thread can only execute m.wait() for a monitor
m if it has acquired the intrinsic lock of m. There should
thus be at least one obligation for the lock of m in obs.
This should be asserted.

Secondly, a thread may only wait for a condition variable
v if v has the lowest wait level of all wait levels of the
obligations of the thread. An assertion is thus needed
that compares the wait levels of the obligations in obs

and asserts that the wait level of v is the lowest.

Thirdly, similar to the previous action, it should be as-
serted that the intrinsic lock of the monitor has the lowest
wait level among the wait levels of obs.

Fourthly, as m.Wt is going to be incremented, an assertion

is required that asserts that m.Ot > 0 (which is equal to
enoughObs(v, Wt] {v}, Ot), since m.Wt + 1 > 0) holds.

Finally, m.Wt should be incremented.

4.3.7 Notifying threads
Notifying one thread should result in decrementing the Wt

field of the monitor m. Note that m.Wt should always be
nonnegative, so m.Wt should only be decremented if it is
greater than zero. Otherwise, m.Wt stays zero.

Notifying all threads results in assigning 0 to m.Wt.

5. VALIDATION
To validate the proposed implementation, part of it has
been implemented in VerCors as a proof of concept. All
new annotations have been added to the parser and the
type checker, but only the functionality of the annotations
and monitor methods that involve Wt or Ot has been im-
plemented, as well as setting and querying the wait level
of a lock or condition variable. The implementation can
be found on the associated GitHub repository [22].

All annotated examples in this paper have been success-
fully verified by the implementation in VerCors. Note that
it does not support all functionality, in particular annota-
tions and methods that involve the local bag of obligations.
The reason for this is a time constraint. The current im-
plementation is thus not able to fully verify absence of
deadlock, but nonetheless shows the feasibility of the pro-
posed implementation.

6. EXAMPLE PROGRAM
To illustrate how a program should be annotated, this
section shows an example program. More examples can
be found on [23].

The example program in Listings 5-7 is an implementation
of a barrier. A barrier is a construct that is often used
to synchronize threads. A thread that enters a barrier
waits until a predefined amount of threads has entered the
barrier. If the last thread enters the barrier, all threads
are notified and resume their executions.

The program starts with the main() method in line 4 of
Listing 7. The main thread starts with an empty bag
of obligations and should also end with an empty bag,
indicated by context \no_obs in line 3. After a barrier is
created in line 5, the wait levels of the condition variable
and the intrinsic lock of barrier are set (lines 6-7). Also,
three obligations for barrier are charged (line 8).

Each BarrierThread then takes over one of those obliga-
tions (by using transfer_ob) and is started (lines 10-18).
At the end of main, the main thread thus has an empty bag
of obligations. All threads are concurrently executing the
first for-loop and will then enter the barrier (lines 29-30) of
Listing 6. Next to the correct permissions, the waitFor-

Barrier() method (line 28 of Listing 5) requires that the
calling thread has an obligation for the condition variable
and specifies the allowed values for n and \Ot(this).

Since waitForBarrier() will discharge one obligation, each
thread will end with an empty bag of obligations. As there
are no obligations in the system anymore, this program is
verified successfully.

1 public c lass Bar r i e r {
2
3 private int n ;
4
5 /∗@
6 r e qu i r e s n > 0 ;
7 ensures Perm(t h i s . n , read) ;

7

8 ensures t h i s . n == n ;
9 ∗/

10 public Bar r i e r (int n) {
11 this . n = n ;
12 }
13
14 /∗@
15 context Perm(n , read) ;
16 context Perm(\Ot(t h i s) , read) ;
17 context Perm(\ wa i t l e v e l (\ l o ck (t h i s)) , read)

;
18 context Perm(\ wa i t l e v e l (\ cond (t h i s)) , read)

;
19 context \wa i t l e v e l (\ l o ck (t h i s)) == 0 ;
20 context \wa i t l e v e l (\ cond (t h i s)) == 1 ;
21 r e qu i r e s n > 0 ;
22 r e qu i r e s \Ot(t h i s) > 0 ;
23 r e qu i r e s n <= \Ot(t h i s) ;
24 r e qu i r e s \has ob (\ cond (t h i s)) ;
25 ensures !\ has ob (\ cond (t h i s)) ;
26 ensures n == \ old (n) − 1 ;
27 ∗/
28 public synchronized void waitForBarr i e r () {
29 n−−;
30 i f (n == 0) {
31 no t i f yA l l () ;
32 //@ d i s charge ob t h i s ;
33 } else {
34 //@ di s charge ob t h i s ;
35 wait () ;
36 }
37 }
38 }

Listing 5. Barrier.java

1 public c lass Barr ierThread {
2
3 private f ina l Bar r i e r b a r r i e r ;
4
5 /∗@
6 ensures Perm(t h i s . ba r r i e r , read) ;
7 ensures t h i s . b a r r i e r == ba r r i e r ;
8 ∗/
9 public Barr ierThread (Bar r i e r b a r r i e r) {

10 this . b a r r i e r = ba r r i e r ;
11 }
12
13 /∗@
14 context Perm(ba r r i e r , read) ;
15 context Perm(\Ot(b a r r i e r) , read) ;
16 context Perm(\ wa i t l e v e l (\ l o ck (b a r r i e r)) ,

read) ;
17 context Perm(\ wa i t l e v e l (\ cond (b a r r i e r)) ,

read) ;
18 context Perm(ba r r i e r . n , read) ;
19 context \wa i t l e v e l (\ l o ck (b a r r i e r)) == 0 ;
20 context \wa i t l e v e l (\ cond (b a r r i e r)) == 1 ;
21 r e qu i r e s b a r r i e r . n > 0 ;
22 r e qu i r e s \Ot(b a r r i e r) > 0 ;
23 r e qu i r e s b a r r i e r . n <= \Ot(b a r r i e r) ;
24 r e qu i r e s \has ob (\ cond (b a r r i e r)) ;
25 ensures \no obs ;
26 ensures b a r r i e r . n == \ old (b a r r i e r . n) − 1 ;
27 ∗/
28 public void s t a r t () {
29 for (int i = 0 ; i < 10 ; i++) { }
30 b a r r i e r . wa i tForBarr i e r () ;
31 for (int j = 10 ; j < 20 ; j++) { }
32 }
33
34 public void j o i n () ;
35
36 //@ ensures \ r e s u l t == \ cu r r en t th r ead ;
37 public int get Id () ;
38 }

Listing 6. BarrierThread.java

1 public c lass Main {
2
3 //@ context \no obs ;
4 public void main () {
5 Bar r i e r b a r r i e r = new Bar r i e r (3) ;
6 //@ s e t w a i t l e v e l \ l o ck (b a r r i e r) , 0 ;
7 //@ s e t w a i t l e v e l \cond (b a r r i e r) , 1 ;
8 //@ charge obs ba r r i e r , 3 ;

9
10 Barr ierThread t1 = new Barr ierThread (b a r r i e r

) ;
11 //@ t r an s f e r ob ba r r i e r , t1 . get Id () ;
12 Barr ierThread t2 = new Barr ierThread (b a r r i e r

) ;
13 //@ t r an s f e r ob ba r r i e r , t2 . get Id () ;
14 Barr ierThread t3 = new Barr ierThread (b a r r i e r

) ;
15 //@ t r an s f e r ob ba r r i e r , t3 . get Id () ;
16 t1 . s t a r t () ;
17 t2 . s t a r t () ;
18 t3 . s t a r t () ;
19
20 t1 . j o i n () ;
21 t2 . j o i n () ;
22 t3 . j o i n () ;
23 }
24 }

Listing 7. Main.java

7. CONCLUSION
This paper showed how the technique proposed in [14] can
be incorparated in VerCors to verify deadlock-freeness of
Java-like programs with monitors. With a proof of concept
implementation, the feasibility of the technique is shown.
For the implementation, eleven new annotations were de-
fined, consisting of both expressions and statements. The
application of those annotations were shown in an example
program.

8. DISCUSSION AND FUTURE WORK
Based on the results of this paper, several directions for
future work can be identified.

This research only focused on monitors that have exactly
one lock and one condition variable, since this is the de-
fault monitor in Java. However, Java also has support for
condition interfaces, which allows a lock to have multiple
condition variables associated with it. Future work would
consist of extending the implementation proposed in this
paper to support multiple condition variables per lock.

Although the technique introduced in [14] describes verifi-
cation of condition variables in general, this paper only fo-
cused on the application of monitors. For example, Hamin
et al. [14] describe a relaxation of their technique, such
that a wider range of applications of condition variables
can be verified, such as bounded channels. Future work
consists of applying this relaxation to the implementation
described in this paper.

Finally, the proposed implementation requires the pro-
grammer to annotate their code manually. In addition,
some insight in the technique is necessary to correctly an-
notate a program. For example, a precondition or lock in-
variant using Wt or Ot might be required, which requires
knowledge of the underlying theory. Future work can be
aimed at reducing the amount of manual annotations and
simplifying the verification for programmers.

9. REFERENCES
[1] A. O. Abd El-Gwad, A. I. Saleh, and M. M.

Abd-ElRazik. A novel scheduling strategy for an
efficient deadlock detection. In Proceedings - The
2009 International Conference on Computer
Engineering and Systems, ICCES’09, pages 579–583,
2009.

[2] E. Aldakheel. Deadlock Detector and Solver (DDS).
In M. Chaudron, I. Crnkovic, M. Chechik, and
M. Harman, editors, Proceedings of the 40th

8

International Conference on Software Engineering:
Companion Proceeedings, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, pages 512–514.
ACM, 2018.

[3] A. Amighi, S. Blom, S. Darabi, M. Huisman,
W. Mostowski, and M. Zaharieva-Stojanovski.
Verification of Concurrent Systems with VerCors. In
M. Bernardo, F. Damiani, R. Hähnle, E. B. Johnsen,
and I. Schaefer, editors, Formal Methods for
Executable Software Models - 14th International
School on Formal Methods for the Design of
Computer, Communication, and Software Systems,
SFM 2014, Bertinoro, Italy, June 16-20, 2014,
Advanced Lectures, volume 8483 of Lecture Notes in
Computer Science, pages 172–216. Springer, 2014.

[4] A. Amighi, C. Haack, M. Huisman, and C. Hurlin.
Permission-Based Separation Logic for
Multithreaded Java Programs. Logical Methods in
Computer Science, 11(1), feb 2015.

[5] S. Blom, S. Darabi, M. Huisman, and W. Oortwijn.
The VerCors Tool Set: Verification of Parallel and
Concurrent Software. In N. Polikarpova and
S. Schneider, editors, Integrated Formal Methods -
13th International Conference, IFM 2017, Turin,
Italy, September 20-22, 2017, Proceedings, volume
10510 of Lecture Notes in Computer Science, pages
102–110. Springer, 2017.

[6] S. Blom and M. Huisman. The VerCors Tool for
Verification of Concurrent Programs. In C. B. Jones,
P. Pihlajasaari, and J. Sun, editors, FM 2014:
Formal Methods - 19th International Symposium,
Singapore, May 12-16, 2014. Proceedings, volume
8442 of Lecture Notes in Computer Science, pages
127–131. Springer, 2014.

[7] E. Cohen, M. Dahlweid, M. A. Hillebrand,
D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
and S. Tobies. VCC: A Practical System for
Verifying Concurrent C. In S. Berghofer, T. Nipkow,
C. Urban, and M. Wenzel, editors, Theorem Proving
in Higher Order Logics, 22nd International
Conference, TPHOLs 2009, Munich, Germany,
August 17-20, 2009. Proceedings, volume 5674 of
Lecture Notes in Computer Science, pages 23–42.
Springer, 2009.

[8] P. de Carvalho Gomes, D. Gurov, and M. Huisman.
Specification and Verification of Synchronization
with Condition Variables. In C. Artho and P. C.
Ölveczky, editors, Formal Techniques for
Safety-Critical Systems - 5th International
Workshop, FTSCS 2016, Tokyo, Japan, November
14, 2016, Revised Selected Papers, volume 694 of
Communications in Computer and Information
Science, pages 3–19, 2016.

[9] L. De Moura and N. Bjørner. Z3: An efficient SMT
Solver. In Tools and Algorithms for the Construction
and Analysis of Systems,14th International
Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedi, volume 4963 of Lecture
Notes in Computer Science, pages 337–340.
Springer, Berlin, Heidelberg, 2008.

[10] FMT - University of Twente. The VerCors Verifier.
https://vercors.ewi.utwente.nl.

[11] P. Gerakios, N. Papaspyrou, and K. Sagonas. A type
and effect system for deadlock avoidance in low-level
languages. In S. Weirich and D. Dreyer, editors,
Proceedings of TLDI 2011: 2011 ACM SIGPLAN

International Workshop on Types in Languages
Design and Implementation, Austin, TX, USA,
January 25, 2011, pages 15–28. ACM, 2011.

[12] B. Goetz. Java Concurrency in Practice.
Addison-Wesley Professional, 1st edition, 2006.

[13] C. S. Gordon, M. D. Ernst, and D. Grossman. Static
lock capabilities for deadlock freedom. In B. C.
Pierce, editor, Proceedings of TLDI 2012: The
Seventh ACM SIGPLAN Workshop on Types in
Languages Design and Implementation,
Philadelphia, PA, USA, Saturday, January 28, 2012,
pages 67–78. ACM, 2012.

[14] J. Hamin and B. Jacobs. Deadlock-Free Monitors. In
A. Ahmed, editor, Programming Languages and
Systems - 27th European Symposium on
Programming, ESOP 2018, Held as Part of the
European Joint Conferences on Theory and Practice
of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings, volume 10801 of
Lecture Notes in Computer Science, pages 415–441.
Springer, 2018.

[15] C. A. Hoare. Monitors: An Operating System
Structuring Concept. Communications of the ACM,
17(10):549–557, 1974.

[16] B. Jacobs and F. Piessens. The VeriFast program
verifier. CW Reports, 2008.

[17] C. Laneve. A Lightweight Deadlock Analysis for
Programs with Threads and Reentrant Locks. In
K. Havelund, J. Peleska, B. Roscoe, and E. P.
de Vink, editors, Formal Methods - 22nd
International Symposium, FM 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford,
UK, July 15-17, 2018, Proceedings, volume 10951 of
Lecture Notes in Computer Science, pages 608–624.
Springer, 2018.

[18] G. T. Leavens and Y. Cheon. Design by Contract
with JML. 2006.

[19] K. R. M. Leino, P. Müller, and J. Smans.
Deadlock-Free Channels and Locks. In A. D.
Gordon, editor, Programming Languages and
Systems, 19th European Symposium on
Programming, ESOP 2010, Held as Part of the Joint
European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings, volume 6012 of Lecture
Notes in Computer Science, pages 407–426.
Springer, 2010.

[20] P. Müller, M. Schwerhoff, and A. J. Summers.
Viper: A Verification Infrastructure for
Permission-Based Reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model
Checking, and Abstract Interpretation - 17th
International Conference, VMCAI 2016, St.
Petersburg, FL, USA, January 17-19, 2016.
Proceedings, volume 9583 of Lecture Notes in
Computer Science, pages 41–62. Springer, 2016.

[21] P. O’Hearn. Separation logic. Communications of
the ACM, 62(2):86–95, jan 2019.

[22] M. J. Roelink. GitHub - Matthiti/vercors.
https://github.com/Matthiti/vercors.

[23] M. J. Roelink. Github -
Matthiti/vercors-monitor-examples.
https://github.com/Matthiti/vercors-monitor-
examples.

[24] M. J. Roelink. Online Appendix.
https://roelink.eu/files/encoding-deadlock-free-
monitors-in-vercors-online-appendix.pdf.

9

[25] F. Sorrentino. PickLock: A Deadlock Prediction
Approach under Nested Locking. In B. Fischer and
J. Geldenhuys, editors, Model Checking Software -
22nd International Symposium, SPIN 2015,
Stellenbosch, South Africa, August 24-26, 2015,

Proceedings, volume 9232 of Lecture Notes in
Computer Science, pages 179–199. Springer, 2015.

[26] Utwente-fmt. Prototypal Verification Language.
https://github.com/utwente-
fmt/vercors/wiki/Prototypal-Verification-Language.

10

